Affiliation:
1. School of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
2. School of Information Science and Technology, Taishan University, Taian 271021, P. R. China
Abstract
As thousands of features are available in many pattern recognition and machine learning applications, feature selection remains an important task to find the most compact representation of the original data. In the literature, although a number of feature selection methods have been developed, most of them focus on optimizing specific objective functions. In this paper, we first propose a general graph-preserving feature selection framework where graphs to be preserved vary in specific definitions, and show that a number of existing filter-type feature selection algorithms can be unified within this framework. Then, based on the proposed framework, a new filter-type feature selection method called sparsity score (SS) is proposed. This method aims to preserve the structure of a pre-defined l1 graph that is proven robust to data noise. Here, the modified sparse representation based on an l1-norm minimization problem is used to determine the graph adjacency structure and corresponding affinity weight matrix simultaneously. Furthermore, a variant of SS called supervised SS (SuSS) is also proposed, where the l1 graph to be preserved is constructed by using only data points from the same class. Experimental results of clustering and classification tasks on a series of benchmark data sets show that the proposed methods can achieve better performance than conventional filter-type feature selection methods.
Publisher
World Scientific Pub Co Pte Lt
Subject
Artificial Intelligence,Computer Vision and Pattern Recognition,Software
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献