Deep Hash with Optimal Transport-Based Domain Adaptation for Multisite MRI Retrieval

Author:

Yang Jingcheng12,Wang Qianqian23,Tao Tiwei2,Niu Sijie1ORCID,Liu Mingxia2ORCID

Affiliation:

1. School of Information Science and Engineering, University of Jinan, Jinan 251000, China

2. School of Information Science and Technology, Taishan University, Taian 271000, China

3. School of Mathematics Science, Liaocheng University, Liaocheng, Shandong 252000, China

Abstract

The Internet of Things has a wide range of applications in the medical field. Due to the heterogeneity of medical data generated by different hospitals, it is very important to analyze and integrate data from different institutions. Functional magnetic resonance imaging (fMRI) is widely used in clinical medicine and cognitive neuroscience, while resting-state fMRI (rs-fMRI) can help reveal functional biomarkers of neurological disorders for computer-assisted clinical diagnosis and prognosis. Recently, how to retrieve similar images or case histories from large-scale medical image repositories acquired from multiple sites has attracted widespread attention in the field of intelligent diagnosis of diseases. Although using multisite data effectively helps increase the sample size, it also inevitably introduces the problem of data heterogeneity across sites. To address this problem, we propose a multisite fMRI retrieval (MSFR) method that uses a deep hashing approach and an optimal transport-based domain adaptation strategy to mitigate multisite data heterogeneity for accurate fMRI search. Specifically, for a given target domain site and multiple source domain sites, our approach uses a deep neural network to map the source and target domain data into the latent feature space and minimize their Wasserstein distance to reduce their distribution differences. We then use the source domain data to learn high-quality hash code through a global similarity metric, thereby improving the performance of cross-site fMRI retrieval. We evaluated our method on the publicly available Autism Brain Imaging Data Exchange (ABIDE) dataset. Experimental results show the effectiveness of our method in resting-state fMRI retrieval.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3