Carbon-Based Materials as Effective Adsorbents for the Removal of Pharmaceutical Compounds from Aqueous Solution

Author:

Teo Chian Ying1ORCID,Jong Jim Sii Jack2ORCID,Chan Yee Qian2ORCID

Affiliation:

1. Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, 57000 Kuala Lumpur, Malaysia

2. Undergraduate, School of Pharmacy, International Medical University, 57000 Kuala Lumpur, Malaysia

Abstract

Antibiotics are emerging water pollutants that have attracted significant attention from the scientific community. Antibiotics are generally released via hospital effluents, industrial production waste, animal manure, and irrigated agricultural land. Antibiotic residues can harm all living organisms, with the most detrimental consequence being the generation of antibiotic-resistant microorganisms, commonly known as “superbugs.” Antimicrobial resistance is a concern to the healthcare community as it complicates the treatment of infections. Thus, the development of effective and economical technologies to remove antibiotics from the environment is necessary. Adsorption is a promising technology owing to its effectiveness and high operational feasibility, and carbon-based adsorbents are primitive materials that are particularly suited for antibiotic adsorption. Herein, an overview of the current state of antibiotic pollution will be summarised, including the adverse effects of different antibiotics and challenges associated with antibiotic removal. The adsorption behaviours of tetracycline (TC), quinolone, penicillin, and macrolides on carbon-based adsorbents (i.e., activated carbon, carbon nanotubes, and graphene-based materials) are reviewed. The interactions between antibiotics and carbon-based adsorbents, adsorption mechanism, and adsorption behaviour under different conditions are emphasised. In addition, the limitations of adsorption technology are highlighted to direct future research.

Funder

International Medical University

Publisher

Hindawi Limited

Subject

Surfaces and Interfaces,General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3