Affiliation:
1. Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, 57000 Kuala Lumpur, Malaysia
2. Undergraduate, School of Pharmacy, International Medical University, 57000 Kuala Lumpur, Malaysia
Abstract
Antibiotics are emerging water pollutants that have attracted significant attention from the scientific community. Antibiotics are generally released via hospital effluents, industrial production waste, animal manure, and irrigated agricultural land. Antibiotic residues can harm all living organisms, with the most detrimental consequence being the generation of antibiotic-resistant microorganisms, commonly known as “superbugs.” Antimicrobial resistance is a concern to the healthcare community as it complicates the treatment of infections. Thus, the development of effective and economical technologies to remove antibiotics from the environment is necessary. Adsorption is a promising technology owing to its effectiveness and high operational feasibility, and carbon-based adsorbents are primitive materials that are particularly suited for antibiotic adsorption. Herein, an overview of the current state of antibiotic pollution will be summarised, including the adverse effects of different antibiotics and challenges associated with antibiotic removal. The adsorption behaviours of tetracycline (TC), quinolone, penicillin, and macrolides on carbon-based adsorbents (i.e., activated carbon, carbon nanotubes, and graphene-based materials) are reviewed. The interactions between antibiotics and carbon-based adsorbents, adsorption mechanism, and adsorption behaviour under different conditions are emphasised. In addition, the limitations of adsorption technology are highlighted to direct future research.
Funder
International Medical University
Subject
Surfaces and Interfaces,General Chemical Engineering,General Chemistry
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献