Structural Analysis and Adsorption Studies of (PbO, MgO) Metal Oxide Nanocomposites for Efficient Methylene Blue Dye Removal from Water

Author:

Helali Saloua1ORCID,Rashad Mohamed1ORCID,Ben Mabrouk Anouar2ORCID,Alanazi Munirah A. A.1ORCID,Mustafa Manahil S.3

Affiliation:

1. Department of Physics, Faculty of Sciences, University of Tabuk, King Faisal Road, Tabuk 47512, Saudi Arabia

2. Department of Mathematics, Faculty of Sciences, University of Tabuk, King Faisal Road, Tabuk 47512, Saudi Arabia

3. Department of Statistics, Faculty of Sciences, University of Tabuk, King Faisal Road, Tabuk 47512, Saudi Arabia

Abstract

In the present work, magnesium oxide (MgO) and lead oxide (PbO) nanoparticles were prepared by the co-precipitation method. Their structural parameters and morphology were investigated using XRD, HRTEM, and FTIR. The formation of the phases was seen to have small average crystallite sizes and an orthorhombic crystal structure for both MgO and PbO nanoparticles. The results of HR-TEM showed irregularly shaped nanoparticles: quasi-spherical or rod-like shapes and spherical-like shapes for MgO and PbO nanoparticles, respectively. The produced nanoparticles’ size using X-ray diffraction analysis was found to be 17 nm and 41 nm for MgO and PbO nanoparticles, respectively. On the other hand, it was observed from the calculations that the optical band gap obeys an indirect allowed transition. The calculated values of the band gap were 4.52 and 4.28 eV for MgO and PbO NPs, respectively. The MB was extracted from the wastewater using the prepared composites via absorption. Using a variety of kinetic models, the adsorptions were examined. Out of all the particles, it was discovered that the composites were best. Furthermore, of the models currently under consideration, the pseudo-second-order model best fit the degradation mechanism. The resultant composites could be beneficial for degrading specific organic dyes for water purification, as well as applications needing a wider optical band gap.

Funder

Deanship for Research & Innovation, Ministry of Education in Saudi Arabia

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3