Simultaneous Removal of Seven Pharmaceutical Compounds from a Water Mixture Using Modified Chitosan Adsorbent Materials

Author:

Papageorgiou Myrsini1ORCID,Maroulas Konstantinos N.2ORCID,Evgenidou Eleni13ORCID,Bikiaris Dimitrios N.4ORCID,Kyzas George Z.2ORCID,Lambropoulou Dimitra A.13

Affiliation:

1. Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece

2. Hephaestus Laboratory, Department of Chemistry, School of Science, Democritus University of Thrace, GR-654 04 Kavala, Greece

3. Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, 10th km Thessaloniki-Thermi Rd, GR-570 01 Thessaloniki, Greece

4. Laboratory of Polymers, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece

Abstract

Pharmaceuticals are used to improve the lives of people across the globe. The high demand for their fabrication and use causes a very serious environmental threat since their presence is ubiquitous in aqueous matrices. For this reason, the synthesis, characterisation, and efficiency of three chitosan-based materials to eliminate pharmaceutical mixtures from aqueous solutions were examined in the present study. The target mixture comprised seven widely used drugs: carbamazepine, cyclophosphamide, adefovir, levofloxacin, metronidazole, glibenclamide, and trimethoprim. The grafting of poly(ethylene imine) and poly(acrylamide) on the chitosan structure allowed its physical characteristics to be controlled. An adsorption assessment was performed at different pH values, and it was concluded that pH = 4 was the optimum value. The adsorption kinetics revealed that the adsorption of a drug mixture involves a combination of physical and chemical adsorption. The adsorption process appeared to be finished after 1 h for all compounds of the studied mixture, with CS-AMI exhibiting the fastest kinetics. Mass adsorption experiments were also carried out to determine its effects. Overall, the grafting process significantly increased the adsorption capacity over the pristine material. Specifically, the highest capacity increase for CS-PEI was ~220% for carbamazepine, and for CS-AMI, it was 158% for trimethoprim. FT-IR, SEM, and XRD were used for the characterisation of the polymers. Based on the findings, the three materials are suggested as very effective adsorbents for the elimination of medicine residues from aqueous matrices.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3