Transformation of Nonmultiple Cluster Music Cyclic Shift Topology to Music Performance Style

Author:

Li Jing1ORCID

Affiliation:

1. Institute of Education, Chongqing University of Arts and Sciences, Chongqing 402160, China

Abstract

Music is an abstract art form that uses sound as its means of expression. It has deeply affected our lives. This paper proposes a method for extracting segment features from nonmultiple cluster music files. We divide each piece of music into multiple segments and extract the features of each segment. The specific process includes nonmultiple cluster music file note extraction, main melody extraction, segment division, and segment feature extraction. The segment feature is extracted from a segment of a piece of music, contains the main melody and accompaniment information of the segment, and can reflect the sequence relationship of the notes. This paper proposes a performance style conversion network based on recurrent neural network and convolutional neural network. The bidirectional recurrent neural network based on Gated Recurrent Unit (GRU) is used to extract different styles of note feature vector sequences, and the extracted note feature vector sequence is used to predict the intensity of a specific style, and the intensity changes of different styles of nonmultiple cluster music are better learned. Through the comparison, the multiclassification strategy of “one-to-the-rest” is selected, and the fuzzy recurrent neural network is applied to the shortcomings of the unrecognizable area. Finally, according to the feature extraction method and the principle of the classifier algorithm studied in this paper, a music style classification system is implemented in the MATLAB environment. Experimental simulation shows that this system can effectively classify music performance styles.

Funder

Chongqing University of Arts and Sciences

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3