Comparison of Blackhole and Wormhole Attacks in Cloud MANET Enabled IoT for Agricultural Field Monitoring

Author:

Safdar Malik Tauqeer1,Siddiqui Muhammad Nasir1,Mateen Muhammad1,Malik Kaleem Razzaq1,Sun Song2,Wen Junhao2ORCID

Affiliation:

1. Department of Computer Science, Air University Multan Campus, Multan 60000, Pakistan

2. School of Big Data and Software Engineering, Chongqing University, Chongqing 401331, China

Abstract

In Mobile Ad hoc Network (MANET) enabled Internet of Things (IoT) agricultural field monitoring, sensor devices are automatically connected and form an independent network that serves as a cloud for many services such as monitoring, securing, and properly maintaining. Cloud-based services in MANET models can prove to be an extremely effective way of smart agricultural functionalities for device-to-device information exchange. Security is a serious issue with Cloud-MANET-based IoT since nodes are scattered, mobile, and lacking centralized administrator, which makes it possible for data tampering and illegal actions on cloud servers. Therefore, these types of networks are more vulnerable to Denial of Service (DoS) attacks such as Blackhole and Wormhole. The MANET Enabled IoT-Agricultural Field Monitoring environment is deployed through a case study. The effect of Blackhole and Wormhole attacks is analyzed using the Ad hoc On-demand Distance Vector (AODV) routing protocol with the help of Network Simulator 3 (NS-3) in order to determine which has the most impact on network performance. We computed performance constraints such as throughput, packet delivery ratio (PDR), end-to-end delay (EED), and Jitter-Sum of preprocessed data gathered with the flow-monitor module of NS-3. The effect of attacks on MANET Enabled IoT-Agricultural Field Monitoring is compared on the varying number of nodes participating in the Cloud-MANET-based IoT network. The throughput and goodput capability of every node is computed through the trace metric package. This method is also highly useful for future Cloud-MANET-Based IoT smart agricultural field security research.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Information Systems

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3