Detection and isolation of wormhole nodes in wireless ad hoc networks based on post-wormhole actions

Author:

Bhatti David Samuel,Saleem Shahzad,Imran Azhar,Kim Hyeon Jeong,Kim Ki-Il,Lee Kyu-Chul

Abstract

AbstractThe wormhole attack is one of the most treacherous attacks projected at the routing layer that can bypass cryptographic measures and derail the entire communication network. It is too difficult to prevent a priori; all the possible countermeasures are either too expensive or ineffective. Indeed, literature solutions either require expensive hardware (typically UWB or secure GPS transceivers) or pose specific constraints to the adversarial behavior (doing or not doing a suspicious action). The proposed solution belongs to the second category because the adversary is assumed to have done one or more known suspicious actions. In this solution, we adopt a heuristic approach to detect wormholes in ad hoc networks based on the detection of their illicit behaviors. Wormhole and post wormhole attacks are often confused in literature; that’s why we clearly state that our methodology does not provide a defence against wormholes, but rather against the actions that an adversary does after the wormhole, such as packet dropping, tampering with TTL, replaying and looping, etc. In terms of contributions, the proposed solution addresses the knock-out capability of attackers that is less targeted by the researcher’s community. In addition, it neither requires any additional hardware nor a change in it; instead, it is compatible with the existing network stack. The idea is simulated in ns2.30, and the average detection rate of the proposed solution is found to be 98-99%. The theoretical time to detect a wormhole node lies between 0.07-0.71 seconds. But, from the simulation, the average detection and isolation time is 0.67 seconds. In term of packet loss, the proposed solution has a relatively overhead of $$\approx$$ 22%. It works well in static and mobile scenarios, but the frame losses are higher in mobile scenarios as compared to static ones. The computational complexity of the solution is O(n). Simulation results advocate that the solution is effective in terms of memory, processing, bandwidth, and energy cost. The solution is validated using statistical parameters such as Accuracy, Precision, F1-Score and Matthews correlation coefficient ($$M_{cc}$$ M cc ).

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Novel Approach for Detection of Malicious Attack during Post Disaster Using UAV Assisted Delay Tolerant Network;2024 Second International Conference on Data Science and Information System (ICDSIS);2024-05-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3