Comparative Proteomic Analysis Provides New Insights into the Development of Haustorium in Taxillus chinensis (DC.) Danser

Author:

Pan Limei12,Wan Lingyun12,Song Lisha12,He Lili12,Jiang Ni12,Long Hairong12,Huo Juan12,Ji Xiaowen12,Hu Fengyun12,Fu Jine12ORCID,Wei Shugen12ORCID

Affiliation:

1. Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China

2. Guangxi Key Laboratory for High-Quality Formation and Utilization of Dao-di Herbs, China

Abstract

Taxillus chinensis is an important medicinal and parasitic plant that attacks other plants for living. The development of haustorium is a critical process, imperative for successful parasitic invasion. To reveal the mechanisms underlying haustorium development, we performed an iTRAQ-based proteomics analysis which led to the identification of several differentially abundant proteins (DAPs) in fresh seeds (CK), baby (FB), and adult haustoria (FD). A total of 563 and 785 DAPs were identified and quantified in the early and later developmental stages, respectively. Pathway enrichment analysis revealed that the DAPs are mainly associated with metabolic pathways, ribosome, phenylpropanoid biosynthesis, and photosynthesis. In addition, DAPs associated with the phytohormone signaling pathway changed markedly. Furthermore, we evaluated the content of various phytohormones during different stages of haustoria development. These results indicated that phytohormones are very important for haustorium development. qRT-PCR results validated that the mRNA expression levels were consistent with the expression of proteins, suggesting that our results are reliable. This is the first report on haustoria proteomes in the parasitic plant, Taxillus chinensis, to the best of our knowledge. Our findings will enhance our understanding of the molecular mechanism of haustoria development.

Funder

Guangxi health commission

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3