Improved Dynamic Optimized Kernel Partial Least Squares for Nonlinear Process Fault Detection

Author:

Said Maroua1,Taouali Okba2ORCID

Affiliation:

1. University of Sousse, National Engineering School of Sousse (ENISO), MARS Research Laboratory, LR17ES05, 4011 Hammam Sousse, Tunisia

2. University of Monastir, National Engineering School of Monastir (ENIM), Monastir, Tunisia

Abstract

We suggest in this article a dynamic reduced algorithm in order to enhance the monitoring abilities of nonlinear processes. Dynamic fault detection using data-driven methods is among the key technologies, which shows its ability to improve the performance of dynamic systems. Among the data-driven techniques, we find the kernel partial least squares (KPLS) which is presented as an interesting method for fault detection and monitoring in industrial systems. The dynamic reduced KPLS method is proposed for the fault detection procedure in order to use the advantages of the reduced KPLS models in online mode. Furthermore, the suggested method is developed to monitor the time-varying dynamic system and also update the model of reduced reference. The reduced model is used to minimize the computational cost and time and also to choose a reduced set of kernel functions. Indeed, the dynamic reduced KPLS allows adaptation of the reduced model, observation by observation, without the risk of losing or deleting important information. For each observation, the update of the model is available if and only if a further normal observation that contains new pertinent information is present. The general principle is to take only the normal and the important new observation in the feature space. Then the reduced set is built for the fault detection in the online phase based on a quadratic prediction error chart. Thereafter, the Tennessee Eastman process and air quality are used to precise the performances of the suggested methods. The simulation results of the dynamic reduced KPLS method are compared with the standard one.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3