Comprehensive Monitoring of Complex Industrial Processes with Multiple Characteristics

Author:

Xu Chenxing1ORCID,Yasenjiang Jiarula1ORCID,Cui Pengfei1ORCID,Zhang Shengpeng2ORCID,Zhang Xin2ORCID

Affiliation:

1. College of Mechanical Engineering, Xinjiang University, Urumqi, Xinjiang, China

2. China National Petroleum Corporation, Urumqi, Xinjiang, China

Abstract

Traditional onefold data-driven methods for fault detection in complex process industrial systems with high-dimensional, linear, nonlinear, Gaussian, and non-Gaussian coexistence often have less than satisfactory monitoring performance because only a single distribution of process variables is considered. To address this problem, a hybrid fault detection model based on PCA-KPCA-ICA-KICA-BI (Bayesian inference) is proposed, taking into account the advantages of principal component analysis (PCA), kernel principal component analysis (KPCA), independent component analysis (ICA), and kernel independent component analysis (KICA) in terms of dimensionality reduction and feature extraction. Foremost, this paper proposed a nonlinear evaluation method and divided the feature variables into Gaussian linear blocks, Gaussian nonlinear blocks, non-Gaussian linear blocks, and non-Gaussian nonlinear blocks by using the Jarque–Bera (JB) test and nonlinear discrimination method. Each division was monitored by the PCA-KPCA-ICA-KICA model, and finally the Bayesian fusion strategy proposed in this study is used to synthesize the detection results for each block. The hybrid model helps in evaluating variable features and bettering detection performance. Ultimately, the superiority of this hybrid model was verified through the Tennessee Eastman (TE) process and the Continuous Stirred Tank Reactor (CSTR) process, and the fault monitoring results showed an average accuracy of 85.91% for this hybrid model.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Chemical Engineering

Reference34 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3