On a Deep Learning Method of Estimating Reservoir Porosity

Author:

Zhang Zhenhua1,Wang Yanbin1,Wang Pan2ORCID

Affiliation:

1. College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China

2. State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, Jiangxi, China

Abstract

Porosity is an important parameter for the oil and gas storage, which reflects the geological characteristics of different historical periods. The logging parameters obtained from deep to shallow strata show the stratigraphic sedimentary characteristics in different geological periods, so there is a strong nonlinear mapping relationship between porosity and logging parameters. It is very important to make full use of logging parameters to predict the shale content and porosity of the reservoir for precise reservoir description. Deep neural network technology has strong data structure mining ability and has been applied to shale content prediction in recent years. In fact, the gated recurrent unit (GRU) neural network has further advantage in processing serialized data. Therefore, this study proposes a method to predict porosity by combining multiple logging parameters based on the GRU neural network. Firstly, the correlation measurement method based on Copula function is used to select the logging parameters most relevant to porosity parameters. Then, the GRU neural network is used to identify the nonlinear mapping relationship between logging data and porosity parameters. The application results in an exploration area of the Ordos basin show that this method is superior to multiple regression analysis and recurrent neural network method, which indicates that the GRU neural network is more effective in predicting a series of reservoir parameters such as porosity.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3