Application of a new hybrid particle swarm optimization-mixed kernels function-based support vector machine model for reservoir porosity prediction: A case study in Jacksonburg-Stringtown oil field, West Virginia, USA

Author:

Zhong Zhi1,Carr Timothy R.2

Affiliation:

1. West Virginia University, Department of Geology and Geography, West Virginia, Morgantown 26506, USA and The University of Texas at Austin, Bureau of Economic Geology, Texas, Austin 78713, USA.(corresponding author).

2. West Virginia University, Department of Geology and Geography, West Virginia, Morgantown 26506, USA..

Abstract

Porosity is a fundamental property that characterizes the storage capability of fluid and gas-bearing formations in a reservoir. An accurate porosity value can be measured from core samples in the laboratory; however, core analysis is expensive and time consuming. Well-log data can be used to calculate porosity, but the availability of log suites is often limited in mature fields. Therefore, robust porosity prediction requires integration of core-measured porosity with available well-log suites to control for changes in lithology and fluid content. A support vector machine (SVM) model with mixed kernel function (MKF) is used to construct the relationship between limited conventional well-log suites and sparse core data. Porosity is the desired output, and two conventional well-log responses (gamma ray [GR] and bulk density) and three well-log-derived parameters (the slope of GR, the slope of density, and [Formula: see text]) are input parameters. A global stochastic searching algorithm, particle swarm optimization (PSO), is applied to improve the efficiency of locating the appropriate values of five control parameters in MKF-SVM model. The results of SVM with different traditional kernel functions were compared, and the MKF-SVM model provided an improvement over the traditional SVM model. To confirm the advantage of the hybrid PSO-MKF-SVM model, the results from three models: (1) radial basis function (RBF)-based least-squares SVM, (2) multilayer perceptron artificial neural network (ANN), and (3) RBF ANN, are compared with the result of the hybrid PSO-MKF-SVM model. The results indicate that the hybrid PSO-MKF-SVM model improves porosity prediction with the highest correlation coefficient ([Formula: see text] of 0.9560), the highest coefficient of determination ([Formula: see text] of 0.9140), the lowest root-mean-square error (1.6505), average absolute error value (1.4050), and maximum absolute error (2.717).

Funder

U.S.-China Clean Energy Research Center, Advanced Coal Technology Consortium

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3