Author:
Al-Khafaji Harith,Meng Qingbang,Yahya Wahib,Waleed Samer,Hussain Wakeel,AlHusseini Ahmed K.,Harash Fayez,Al-Khulaidi Ghamdan
Publisher
Springer Nature Singapore
Reference38 articles.
1. Lucia, F.J.: Carbonate Reservoir Characterization an Integrated Approach, 2nd edn., vol. 55, no. 6 (2007)
2. Zhang, Z., Wang, Y., Wang, P.: On a deep learning method of estimating reservoir porosity. Math. Probl. Eng. 2021 (2021)
3. Ayantola, S.O., Amigun, J.O.: Artificial neural network application for optimum prediction of porosity in heterogeneous reservoir using well logs. Academia. Edu 8(1), 11–22 (2020)
4. Tariq, Z., Gudala, M., Yan, B., Sun, S., Mahmoud, M.: A fast method to infer nuclear magnetic resonance based effective porosity in carbonate rocks using machine learning techniques. Geoenergy Sci. Eng. 222, 211333 (2023)
5. Graczyk, K.M., Matyka, M.: Predicting porosity, permeability, and tortuosity of porous media from images by deep learning. Sci. Rep. 10(1), 1–11 (2020)