A Study on Cut Blasting with Large Diameter Charges in Hard Rock Roadways

Author:

Cheng Bing12ORCID,Wang Haibo12,Zong Qi12ORCID,Xu Ying12,Wang MengXiang1,Zheng Qiangqiang12,Li Chengjie1

Affiliation:

1. School of Civil Engineering and Architecture, Anhui University of Science and Technology, Huainan 232001, China

2. State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mine, Anhui University of Science and Technology, Huainan 232001, China

Abstract

To overcome the problems of poor cutting effects in hard rock roadways, a cut blasting technique with large diameter charges was developed; that is, the cut holes employ 50 mm diameter blast holes and 45 mm diameter explosive sticks, while the other holes adopt 42 mm diameter blast holes and 35 mm diameter explosive sticks. First, the effect of charge diameter on damage range and cut cavity formation was analyzed. Next, simulation of wedge cut for different charge diameters was conducted to reveal the stress wave developments and compare the stress field intensities. Finally, field tests were conducted to verify the viability of this technique. The results indicate that large diameter charges can increase the damage range around cut holes to improve the fragmentation degree of the rock mass in the cut cavity and significantly enhance the cavity formation power to better expel the rock mass fragments. The stress wave evolution of wedge cut was visualized using numerical simulations, which confirmed that the use of large diameter charges in cut holes increases the stress field intensity in the cut cavity and hence increases the damage degree of the rock mass. In this study, the use of a large diameter charge for cut blasting increased the average footage by 0.30 m, and the average utilization rate of blast holes increased by 12.5%. Therefore, the cutting effects in hard rock roadways can be improved by using large diameter charges, which increase the blasting footage and the utilization rate of blast holes.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3