Investigation into the Failure Characteristics and Mechanism of Rock with Single Elliptical Defects under Ultrasonic Vibrations

Author:

Niu Zhijun1ORCID,Wang Xufeng1,Zhang Lei1ORCID,Wang Jiyao1,Chang Zechao1,Qian Chenlong1,Chen Xuyang1

Affiliation:

1. School of Mines, Jiangsu Engineering Laboratory of Mine Earthquake Monitoring and Prevention, China University of Mining and Technology, Xuzhou 221116, China

Abstract

In order to investigate the effects of elliptical defects on rock failure under ultrasonic vibrations, ultrasonic vibration tests and PFC2D numerical simulations were conducted on rocks with single elliptical defects. The research results indicated that the fracture fractal dimension, axial strain, and crack depth of specimens with elliptical defects at 45° and 90° were the smallest and largest, respectively. The corresponding strain and fractal dimension showed a positive linear and logarithmic function relationship with time. The maximum crack depth of 46.50 mm was observed on the specimens with an elliptical defect angle of 90°. Specimens with elliptical defects at 0°, 30°, 75°, and 90° exhibited more dense and frequent acoustic emission events than those with elliptical defects at 15°, 45°, and 60°. During the ultrasonic vibration process, the maximum total energy (87.86 kJ) and energy consumption coefficient (0.963) were observed on specimens with elliptical defect angles of 30° and 45°, respectively. The difference in the stress field led to varying degrees of plastic strain energy in the specimens, resulting in different forms of crack propagation and triggering differential acoustic emission events, ultimately leading to specimen failure with different crack shapes and depths. The fractal dimensions of elliptical defect specimens under ultrasonic vibration have a high degree of consistency with the changes in axial strain and failure depth, and the fractal dimension of defect specimens is positively correlated with the degree of failure of defect specimens.

Funder

National Natural Science Foundation of China

Postgraduate Research & Practice Innovation Program of Jiangsu Province

Graduate Innovation Program of China University of Mining and Technology

Open Project of State Key Laboratory of Coking Coal Resources Green Exploitation

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3