Research on Fractal Evolution Characteristics and Safe Mining Technology of Overburden Fissures under Gully Water Body

Author:

Miao Kaijun,Tu ShihaoORCID,Tu Hongsheng,Liu Xun,Li Wenlong,Zhao Hongbin,Tang Long,Ma Jieyang,Li Yan

Abstract

A fractal realizes the quantitative characterization of complex and disordered mining fracture networks, and it is of great significance to grasp the fractal characteristics of rock movement law to guide mine production. To prevent the water-conducting fracture (WF) under the gullies from conducting the surface water body, and to realize the purpose of safe production and surface water body protection. The evolution of overburden fissures in the working face with shallow buried gulley landform and thick bedrock conditions is studied. The development height of water-conducting fracture (DHWF) is theoretically analyzed. The evolution characteristics of overlying fissures with different mining heights were observed by similarity simulation, and the observation results were analyzed by fractal theory. The results show that the main factor that determines the height of WF is mining height. The working face is mined at different mining heights, and the corresponding indexes such as the height of the WF, the area of the caving zone and the fractal dimension are related to engineering phenomena. In particular, the appearance and disappearance of the separation space correspond to the fractal dimension fluctuation phase. The safe mining technology under a gully water body, which mainly reduces mining height, is adopted, and the fissures of the working face are not connected to the surface water body after mining.

Funder

National Natural Science Foundation of China

National Natural Science Foundation for Young Scientists of China

Publisher

MDPI AG

Subject

Statistics and Probability,Statistical and Nonlinear Physics,Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3