Research on the mechanism and application of wedge cutting blasting with hole-inner delay

Author:

Cheng Bing,Wang Quan,Wang Haibo,Zong Qi,Gao Pengfei

Abstract

AbstractTo increase the efficiency of deep-hole blasting driving in mine rock tunnels, an innovative pattern of wedge cutting blasting with hole-inner delay was proposed. First, the blasting mechanisms of conventional and innovative wedge cutting patterns were theoretically investigated. The results showed that the resistance from large upper rock blocks and the clamping action from the surrounding rock were the major challenges of conventional cutting methods. For the innovative cutting pattern, under the conversion of the spatial distribution and release sequence of blasting energy, the first blasting of the upper charge can strengthen the breaking of the upper rock mass and create a new free surface, which provides favorable conditions for the delayed blasting of the bottom charge. Second, finite element models of two cutting patterns were established and solved, and the simulation results visually revealed the propagation of a stress wave. Critically, the stress strength in the upper cavity increased by 66–83% under the action of the upper charge, which was conducive to the breaking of the upper rock mass and the generation of a new free surface. Therefore, the rock mass in the bottom cavity can be readily broken and discharged. Ultimately, field applications were executed in a rock tunnel. Compared with a conventional cutting pattern, the proposed innovative cutting pattern can prominently increase the cycle advance and hole utilization and greatly reduce the unit consumption of explosives and detonators. This research confirms the usability of the innovative wedge cutting pattern with hole-inner delay in deep-hole blasting driving of rock tunnels.

Funder

Open Research Grant of State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines

Open Research Grant of Joint National-Local Engineering Research Centre for Safe and Precise Coal Mining

Scientific Research Foundation for High Level Talents of Anhui University of Science and Technology

Foundation of Anhui Engineering Laboratory of Explosive Materials and Technology

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3