Affiliation:
1. College of Computer Science and Technology, China University of Petroleum, Qingdao 266580, Shandong, China
2. DAMO Academy, Alibaba Group, Hangzhou 310000, Zhejiang, China
Abstract
Tropical cyclones (TC) are one of the extreme disasters that have the most significant impact on human beings. Unfortunately, intensity forecasting of TC has been a difficult and bottleneck in weather forecasting. Recently, deep learning-based intensity forecasting of TC has shown the potential to surpass traditional methods. However, due to the Earth system’s complexity, nonlinearity, and chaotic effects, there is inherent uncertainty in weather forecasting. Besides, previous studies have not quantified the uncertainty, which is necessary for decision-making and risk assessment. This study proposes an intelligent system based on deep learning, PTCIF, to quantify this uncertainty based on multimodal meteorological data, which, to our knowledge, is the first study to assess the uncertainty of TC based on a deep learning approach. In this study, probabilistic forecasts are made for the intensity of 6–24 hours. Experimental results show that our proposed method is comparable to the forecast performance of weather forecast centers in terms of deterministic forecasts. Moreover, reliable prediction intervals and probabilistic forecasts can be obtained, which is vital for disaster warning and is expected to be a complement to operational models.
Funder
National Basic Research Program of China
Subject
Artificial Intelligence,Human-Computer Interaction,Theoretical Computer Science,Software
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献