Short-Term Intensity Prediction of Tropical Cyclones Based on Multi-Source Data Fusion with Adaptive Weight Learning

Author:

Tian Wei1ORCID,Song Ping2,Chen Yuanyuan1,Xu Haifeng1,Jin Cheng3,Sian Kenny Thiam Choy Lim Kam4ORCID

Affiliation:

1. School of Software, Nanjing University of Information Science and Technology, No. 219, Ningliu Road, Nanjing 210044, China

2. School of Computer, Nanjing University of Information Science and Technology, No. 219, Ningliu Road, Nanjing 210044, China

3. Key Laboratory of Smart Earth, Beijing 100000, China

4. School of Atmospheric Science and Remote Sensing, Wuxi University, 333 Xishan Avenue, Wuxi 214105, China

Abstract

Tropical cyclones (TCs) can cause significant economic damage and loss of life in coastal areas. Therefore, TC prediction has become a crucial topic in current research. In recent years, TC track prediction has progressed considerably, and intensity prediction remains a challenge due to the complex mechanism of TC structure. In this study, we propose a model for short-term intensity prediction based on adaptive weight learning (AWL-Net) for the evolution of the TC’s structure as well as intensity changes, exploring the multidimensional fusion of features including TC morphology, structure, and scale. Furthermore, in addition to using satellite imageries, we construct a dataset that can more comprehensively explore the degree of TC cloud organization and structure evolution. Considering the information difference between multi-source data, a multi-branch structure is constructed and adaptive weight learning (AWL) is designed. In addition, according to the three-dimensional dynamic features of TC, 3D Convolutional Gated Recurrent (3D ConvGRU) is used to achieve feature enhancement, and then 3D Convolutional Neural Network (CNN) is used to capture and learn TC temporal and spatial features. Experiments on a sample of northwest Pacific TCs and official agency TC intensity prediction records are used to validate the effectiveness of our proposed model, and the results show that our model is able to focus well on the spatial and temporal features associated with TC intensity changes, with a root mean square error (RMSE) of 10.62 kt for the TC 24 h intensity forecast.

Funder

National Natural Science Foundation of China

Program on Key Basic Research Project of Jiangsu

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3