Affiliation:
1. Tianjin Key Laboratory of Optoelectronic Detection Technology and System, School of Electronics and Information Engineering, Tiangong University, Tianjin, China
Abstract
Fault diagnosis of rolling bearing is important for ensuring the safe operation of industrial machinery. In order to improve diagnosis accuracy of bearing fault, a rolling bearing fault diagnosis method based on multiscale combined morphological filter (MCMF) and self-adaption improved multiscale fuzzy entropy (SAIMFE) is proposed in this paper. First, the MCMF is designed to eliminate noise and preserve fault information more effectively. Second, SAIMFE is proposed to extract bearing fault features, and the optimized scale factor of SAIMFE is determined based on the absolute skewness. Third, some experiments are completed to demonstrate the effectiveness and superiority of the proposed method. The experimental results show that the proposed method not only has high diagnosis accuracy but also less dependent on the diagnosis model.
Funder
Key Program of Science and Technology Support of Tianjin
Subject
Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献