Affiliation:
1. State Grid Shanghai Electrical Power Research Institute, Shanghai 200437, China
2. MOE Key Laboratory of Thermo-Fluid Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China
Abstract
Heat transfer process for trench laying cable is complex. To guarantee safe operation of the cable, it is necessary to predict the temperature and maximum current capacity of trench laying cable rapidly and accurately. Therefore, in this study, an adaptive optimized particle swarm optimization algorithm (LFVPSO) is proposed based on Levy flight algorithm, and it is used to modify the back propagation neural network algorithm (LFVPSO-BPNN). Then, combined with numerical simulations, a network algorithm for temperature prediction of trench laying cable is developed using LFVPSO-BPNN. Finally, the maximum current capacity of four-loop three-phase trench laying cable is calculated using LFVPSO-BPNN together with genetic algorithm (GA&LFVPSO-BPNN). At first, it is found that the LFVPSO-BPNN algorithm proposed in this study is reliable and accurate to predict the cable maximum temperature for different loops (Tmax,i) in the trench. Furthermore, as compared with other similar algorithms, when LFVPSO-BPNN algorithm is used to predict the temperature of trench laying cable, its computation time would be reduced and the prediction accuracy would be improved as well. Second, it is revealed that the effect of ground air temperature (Tsur) on the maximum current capacity of trench laying cable (It,max) is remarkable. As Tsur increases, the It,max for both flat-type and trefoil-type trench laying cable would significantly decrease. In addition, with the same Tsur, the It,max for the flat-type trench laying cable are obviously higher.
Funder
State Grid Shanghai Electric Power Company
Subject
General Engineering,General Mathematics
Reference31 articles.
1. The performance analysis of a new thermal backfill material for underground power cable system
2. The economic and technical comparison for several power cables laying methods;B. Cong;High Voltage Engineering,2001
3. Numerical Study of Convection and Radiation Heat Transfer in Pipe Cable
4. Status and prospect on calculation and increase of cable ampacity;F. Jiang;Electric Wire and Cable,2020
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献