Heat Transfer Simulation and Temperature Rapid Prediction for Trench Laying Cable

Author:

Fu Chen-Zhao1,Si Wen-Rong1ORCID,Fang Ke-Ke2,Yang Jian2ORCID

Affiliation:

1. State Grid Shanghai Electrical Power Research Institute, Shanghai 200437, China

2. MOE Key Laboratory of Thermo-Fluid Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China

Abstract

Heat transfer process for trench laying cable is complex. To guarantee safe operation of the cable, it is necessary to predict the temperature and maximum current capacity of trench laying cable rapidly and accurately. Therefore, in this study, an adaptive optimized particle swarm optimization algorithm (LFVPSO) is proposed based on Levy flight algorithm, and it is used to modify the back propagation neural network algorithm (LFVPSO-BPNN). Then, combined with numerical simulations, a network algorithm for temperature prediction of trench laying cable is developed using LFVPSO-BPNN. Finally, the maximum current capacity of four-loop three-phase trench laying cable is calculated using LFVPSO-BPNN together with genetic algorithm (GA&LFVPSO-BPNN). At first, it is found that the LFVPSO-BPNN algorithm proposed in this study is reliable and accurate to predict the cable maximum temperature for different loops (Tmax,i) in the trench. Furthermore, as compared with other similar algorithms, when LFVPSO-BPNN algorithm is used to predict the temperature of trench laying cable, its computation time would be reduced and the prediction accuracy would be improved as well. Second, it is revealed that the effect of ground air temperature (Tsur) on the maximum current capacity of trench laying cable (It,max) is remarkable. As Tsur increases, the It,max for both flat-type and trefoil-type trench laying cable would significantly decrease. In addition, with the same Tsur, the It,max for the flat-type trench laying cable are obviously higher.

Funder

State Grid Shanghai Electric Power Company

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Reference31 articles.

1. The performance analysis of a new thermal backfill material for underground power cable system

2. The economic and technical comparison for several power cables laying methods;B. Cong;High Voltage Engineering,2001

3. Numerical Study of Convection and Radiation Heat Transfer in Pipe Cable

4. Status and prospect on calculation and increase of cable ampacity;F. Jiang;Electric Wire and Cable,2020

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3