Numerical Study of Convection and Radiation Heat Transfer in Pipe Cable

Author:

Fu Chen-Zhao1,Si Wen-Rong1ORCID,Quan Lei2,Yang Jian2ORCID

Affiliation:

1. State Grid Shanghai Electrical Power Research Institute, Shanghai, 200437, China

2. Key Laboratory of Thermo-Fliud Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China

Abstract

Pipe cable is considered as an important form for underground transmission line. The maximum electrical current (ampacity) of power cable system mostly depends on the cable conductor temperature. Therefore, accurate calculation of temperature distribution in the power cable system is quite important to extract the cable ampacity. In the present paper, the fluid flow and heat transfer characteristics in the pipe cable with alternating current were numerically studied by using commercial code COMSOL MULTIPHYSICS based on finite element method (FEM). The cable core loss and eddy current loss in the cable were coupled for the heat transfer simulation, and the difference of heat transfer performances with pure natural convection model and radiation-convection model was compared and analysed in detail. Meanwhile, for the radiation-convection model, the effects caused by radiant emissivity of cable surface and pipe inner surface, as well as the cable location in the pipe, were also discussed. Firstly, it is revealed that the radiation and natural convection heat flux on the cable surface would be of the same order of magnitude, and the radiation heat transfer on the cable surface should not be ignored. Otherwise, the cable ampacity would be underestimated. Secondly, it is found that the overall heat transfer rate on the cable surface increases as the cable surface emissivity increases, and this is more remarkable to the upper cable. While the effect caused by the radiant emissivity on the pipe inner surface would be relatively small. Furthermore, it is demonstrated that, as cable location in the pipe falls, the natural convection heat transfer would be enhanced. These results would be meaningful for the ampacity prediction and optimum design for the pipe cable.

Funder

State Grid Corporation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3