Research on the Improvement of Cable Ampacity in Dense Cable Trench

Author:

Zhang Han1,Yu Shangyu2,Liu Zhenguo3,Cheng Xiangmao1,Zeng Yanqi2,Shu Jian1,Liu Gang2ORCID

Affiliation:

1. Chaozhou Power Supply Bureau, Guangdong Power Grid Co., Ltd., Guangzhou 521000, China

2. School of Electric Power Engineering, South China University of Technology, Guangzhou 510641, China

3. Innovation Department, Guangdong Power Grid Co., Ltd., Guangzhou 510620, China

Abstract

Due to the influence of many factors, distribution cables are often densely placed at the bottom of the cable trench. As a result, it is easy for distribution cables to become the thermal bottleneck of the whole transmission line. To address this dilemma, this paper establishes a finite element simulation model of a cable trench to analyze the hot spots of cables with different arrangements in the cable trench. Then, the model’s accuracy is verified based on real temperature rise experiments. For an arrangement with overheating risk, the ampacity improvement method of filling the cable trench with high-thermal-conductivity material was proposed, and the ampacity improvement effect under different filling ratios was assessed. Finally, combined with the analysis of economic benefit and cost, the method of determining the optimal filling ratio was used, and the impact resistance of the cables under the impact of new energy load was analyzed. The results indicate that, for the case of the optimal filling ratio, the cables in the dense cable trench showed superior impact resistance. The investigations in this paper make significant contributions to the promotion of the maximum utilization of cables.

Funder

China Southern Power Grid Company Limited’s Science and Technology Projects

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3