An Improved Inverse Kinematics Solution for a Robot Arm Trajectory Using Multiple Adaptive Neuro-Fuzzy Inference Systems

Author:

Refaai Mohamad Reda A.12ORCID

Affiliation:

1. Department of Mechanical Engineering, College of Engineering, Prince Sattam bin Abdulaziz University, Alkharj, 16273, Saudi Arabia

2. Mechanical design department, Faculty of Mechanical and Electrical Engineering, Damascus University, Syria

Abstract

Inverse kinematics of robots is a critical topic in the robotics field. Although there are conventional ways of solving inverse kinematics, soft computing is an important technology that has lately gained prominence due to its ability to reduce the complexity of the inverse kinematics problem. This paper presents an inverse kinematics solution using multiple adaptive neuro-fuzzy inference systems (MANFIS). Different models were established by employing various methods of identification. Subtractive Clustering (SCM), Fuzzy C-Means Clustering (FCM), and Grid Partitioning (GP) are the three methods used in this study. This work is being carried out on a 5-DOF articulated robot arm, which is commonly used in industry. A mathematical model is built based on the Denavit-Hartenberg (DH) approach. Following confirmation that the kinematic findings of the mathematical model match the actual observed values of the robot arm, two types of data sets are generated: a random data set and a systematic data set based on a trajectory. The data sets are then utilized to train and evaluate ANFIS models and choose the optimal models to develop MANFIS model. Thus, the prediction and experimental data are compared to assess the performance of the MANFIS model.

Funder

Prince Sattam bin Abdulaziz University

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3