Affiliation:
1. Université de Carthage, Faculté des Sciences de Bizerte, UR13ES46 Physique des Matériaux Lamellaires et Nano-Matériaux Hybrides (PMLNMH), 7021 Zarzouna, Tunisia
Abstract
The aim of this work is to quantitatively characterize the structural response to a chemical disruption of saturated montmorillonite crystallites by organic molecules (tetracycline (TC)), derived from pharmaceutical waste. The chemical disturbance is performed by varying the surrounding soil solution pH. To show the effect of this chemical perturbation on the interlamellar space (IS) configuration and the hydration properties, an “in situ” XRD analysis, based on the modeling of the 00l reflections, is carried out. The “in situ” XRD analysis is performed by varying the relative humidity conditions (%RH). FTIR SEM and BET- (Brunauer-Emmett-Teller-) BJH (Barrett-Joyner-Halenda) analyses are used as complementary techniques to confirm the structural changes accompanying the intercalation process. Results showed a dependence between solution acid character and the TC adsorption mechanism. From pH values close to 7, the deprotonation of the TC molecule within IS is accelerated by an increasing %RH rate. IR spectroscopy shows that the structure is preserved versus pH value and only a shift of the water deformation bands ascribed to interlamellar water molecule abundance and TC conformation is observed. The surface morphology studied by SEM shows the increase in the surface porosity by increasing the pH value. BET-specific surface area and BJH pore size distribution (PSD) analyses confirm the SEM observations.
Subject
General Materials Science
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献