Clay mineral transformation mechanism modelling of shale reservoir in Da’anzhai Member, Sichuan Basin, Southern China

Author:

Yang Leilei,Lu Longfei,Li Xiaowei,Shan Yansheng,Mo Chenchen,Sun Meng,Hu Jing,Liu Weibin,Liang Baoxing,Xu Jin

Abstract

Shale reservoirs often undergo intense clay mineral transformation, which plays a crucial role in the formation and evolution of pores. The reservoir lithofacies types of Da’anzhai Member in the Sichuan Basin are complex, the heterogeneity is strong, and the transformation mechanism of clay minerals is unclear, limiting the understanding of reservoir diagenesis and reservoir formation mechanism. In this study, we selected the typical shale reservoir in the Da’anzhai Member of the eastern Sichuan Basin and innovatively introduced the multiphase fluid-chemical-thermal multi-field coupled numerical simulation technique to focus on the dissolution, precipitation and transformation laws of diagenetic minerals in the shale reservoir. We calculated the transformation of diagenetic minerals and their physical response under different temperatures, pressure and fluid conditions and identified the main controlling factors of mineral transformation in shale reservoirs in the study area. The results show that the transformation of smectite to illite in the Da’anzhai Member is a complex physicochemical process influenced by various factors such as temperature, pressure, fluid, and lithology. The increase in temperature can promote illitization until the critical temperature of 110°C–115°C, below which the conversion rate of smectite to illite increases as the temperature increases. However, when it is higher than the critical temperature, the degree of illitization decreases. In specific K-rich fluids, organic acids significantly affect the conversion of clay minerals in the Da’anzhai Member of the formation. The acidic fluid promotes the dissolution of minerals such as K-feldspar and releases K+, thus provides the material basis for illitization. The research results provide theoretical support for the diagenetic and formation mechanism of the shale reservoir in the Da’anzhai Member of the Sichuan Basin and even for the efficient exploration and development of shale gas.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3