Impact of Uniaxial Mechanical Perturbation on Structural Properties and Smectite Porosity Features: Ion Exchanger Efficiency and Adsorption Performance Fate

Author:

Oueslati Walid1ORCID,Mejri Chadha1,Ben Haj Amara Abdesslem1

Affiliation:

1. Université de Carthage, Faculté des Sciences de Bizerte, LR19ES20, Ressources, Matériaux et Ecosystèmes (RME), Bizerte 7021, Tunisia

Abstract

The use of montmorillonite in the context of engineered barriers makes it possible to minimize the spread of heavy metals from industrial and even radioactive waste. An evaluation of the performance of the mechanisms controlling the clay-environment interaction and predicting the dynamics/configuration of the interlayer space (IS) is required. This work focuses on a quantitative identification of the structural changes and porosity alteration in the case of heavy metal-exchanged montmorillonite samples (Co2+ and Cd2+ cations) undergoing mechanical stresses (uniaxial oedometric test (loading/unloading)). Relationships between mechanical stress strength, intrinsic structural response, ion exchanger efficiency, and adsorption performance fate are investigated. This goal is achieved through the correlation of in situ quantitative X-ray diffraction (XRD) analysis (under an extremely controlled atmosphere reached by varying relative humidity rate %rh) and porosity investigation (assured by combining outcomes from BET (Brunauer–Emmett–Teller) and BJH- (Barrett, Joyner, and Halenda-) PSD (pore size distribution) analysis). Obtained results show an upsurge in the structural heterogeneities accompanying the theoretical increase in the mixed layer structure (MLS) number and developing an unconventional hydration behaviour after stress relaxation regardless of exchangeable cation nature. Experimental XRD patterns are reproduced using MLS, which suggests the coexistence of more than one “crystallite” specie and more than one exchangeable cation indicating a complex cation exchange capacity (CEC) saturation. For extremely low %rh value, a new homogeneous dehydrated state trend is observed in the case of the Co2+ cation. Porosity analysis shows mesopore volume growth for the stressed sample and confirms crystallite exfoliation layer trends, results of the layer cohesion damage, and subsequent constraint strength fluctuations.

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Reference103 articles.

1. Intergenerational Ethical Issues and Communication Related to High-Level Nuclear Waste Repositories

2. Long-term Safety for the Final Repository for Spent Nuclear Fuel at Forsmark;S. S. K. AB;Main Report Of the SR-Site Project,2018

3. Overview of hydrogeological site-descriptive modeling conducted for the proposed high-level nuclear waste repository site at Forsmark, Sweden;SELROOS, Jan-Olof et FOLLIN, Sven;Hydrogeology Journal,2014

4. Geological disposal of radioactive waste in clay;G. Bernd;Elements,2016

5. Long-term storage of spent nuclear fuel

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3