Research on the Deformation Mechanism of Mining Roadway Stratiform Surrounding Rock with Nonuniform Stress Field

Author:

Sun Yongxin12ORCID

Affiliation:

1. School of Mines, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China

2. Shanxi Tiandi Wangpo Coal Mining Co.,Ltd., Jincheng, Shanxi 048021, China

Abstract

Aiming at the failure problems of mining roadway stratiform surrounding rock influenced by asymmetrical high stress, firstly, the rock instability conditions of different structural plane angles were summarized based on the mechanical model of rock joints and instability criterion. Secondly, stresses, plastic zone, and displacement of surrounding rock with different structural plane angles were calculated and analyzed with the theoretical calculation method or numerical simulation method, respectively. The distribution characteristics of plastic zone of surrounding rock under different influence factors are further studied, and the results show that the lateral pressure coefficient can change the size and shape of plastic zone at the same time. The damage mechanism was analyzed through the above study. Research studies show that the shear and tension failure area of plastic zone were directly determined by the maximum shear stress and the minimum principal stress. The effect of structure planes on stress has two sides, one to destroy the continuity and the other to strengthen discreteness and laddering nature. When the angle between maximum shear stress and structure plane increases, the extended mode and distribution pattern of plastic zone change substantially as well. The #15 haulage roadway is taken as engineering background, and the above research’s results are verified by the comprehensive analysis. The research results can enrich the butterfly plastic zone theory and provide the basis for roadway supporting design.

Funder

CCTEG Coal Mining Research Institute

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Reference23 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3