Characteristics of Perimeter Rock Damage in a Bottom-Pumping Roadway under the Influence of Mining Activities and Rational Location Studies: A Case Study

Author:

Bai Libin12,Wu Fengfeng1,Yang Peiju1,Zhang Shurong1ORCID,Li Bin1

Affiliation:

1. School of Mines, China University of Mining and Technology, Xuzhou 221000, China

2. Liuta Coal Mine, China National Energy Shendong Coal Group, Ordos 221000, China

Abstract

With the aim of determining the damage characteristics and a reasonable positional arrangement of the surrounding rock in a bottom-pumping roadway influenced by mining in a high-gas mine, the boundary equation for the plastic zone of the surrounding rock in a circular roadway under an unequal compressive stress field was adopted to analyze the relationship between the distribution characteristics of the plastic zone of the bottom-pumping roadway and the stability of the rock surrounding the bottom-pumping roadway under different bidirectional stress ratios. This was carried out in the bottom-pumping roadway of the working face of Licun coal mine 3301 as the engineering background, where the nature of the coal seams mined is bituminous coal, and the absolute gas outflow is 0.5 m3/min−1. A numerical simulation was used to analyze the distribution characteristics of the surrounding rock stress and the bidirectional stress ratio, as well as the deformation and damage characteristics of the surrounding rock at different positions in the bottom-pumping roadway. A numerical simulation was applied to analyze the distribution characteristics of the surrounding rock stress and the two-way stress ratio, as well as the deformation and damage characteristics of the rock surrounding the bottom-pumping roadway when the bottom-pumping roadway was arranged in different locations. The results show that, with an increase in the bidirectional stress ratio, the plastic zone of the perimeter rock in the bottom-pumping roadway shows nonuniform “butterfly” distribution characteristics, which seriously affects the stability of the rock on the perimeter of the roadway; the stress on the bottom plate of the working face after excavation can be divided into four areas according to the size of the bidirectional stress ratio and the stress loading and unloading states. In addition, the size of the perimeter rock deformation can be sorted into four areas according to the damage range of the perimeter of the rock plastic zone in the bottom-pumping roadway. The size of the deformation in the surrounding rock can be sorted as follows: unpressurized high-stress ratio > unpressurized stress ratio stable area > pressurized low-stress ratio area > original rock stress ratio area. Accordingly, we found that the reasonable location of the bottom-pumping roadway is arranged at the 15 m position outside the hollow area below the coal pillar, along the limestone upper medium-grained sandstone layer along the bottom. The study’s results were applied to the field. The industrial experiments on the site show that the deformation of the surrounding rock is reasonable when the bottom-pumping roadway is dug along the limestone roof and arranged 15 m outside the fault of the mining hollow area below the coal pillar.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3