Experiment and Numerical Simulation of Strength and Stress Distribution Behaviors of Anchored Rock Mass in a Roadway

Author:

Zhao Honghui12,Su Haijian1ORCID,Qin Xiaofeng1,Zhang Kai1ORCID,Jiang Yu1,Wang Wenbo1

Affiliation:

1. State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Xuzhou 221116, China

2. East China Environmental and Geotechnical Engineering Branch, China National Petroleum Corporation, Qingdao 266000, China

Abstract

Due to the influence of the ground stress, mining disturbance, and other factors, the roadway surrounding rock in deep underground engineering such as mines, tunnels, and underground caverns is prone to looseness and deformation with the excavation of roadways. In such engineering, the bolt support is frequently employed to stabilize the surrounding rock. In this work, a part of the anchor and the surrounding rock were taken as a simplified model of the anchorage rock mass, and the laboratory compression test was performed on the similitude model. Then, the FLAC3D software was used to simulate varying numbers of bolts and different lateral pressure conditions, and the peak stress, the maximum principal stress field, and the anchor stress field distribution of the anchorage rock mass were obtained. The influence of bolt pretightening force and row spacing on the stability of surrounding rock was discussed using the combined arch theory. The results show that increasing the number of bolts and lateral pressure in the anchorage rock mass can significantly improve the stress value and distribution range of the maximum principal stress field and the anchorage stress field. The fluctuation of the anchorage stress field at different anchorage distances can be lessened by increasing the number of bolts (bolt density). When the lateral pressure exceeds 3 MPa, the anchorage mechanical characteristics of the anchorage rock mass tend to remain stable. The coverage of the effective anchorage stress field and the thickness of the surrounding rock anchorage composite arch can be increased by increasing the bolt pretightening force and decreasing row spacing, consequently improving the anchorage mechanical characteristics of the anchorage rock mass. The research results can be used as a theoretical reference for choosing appropriate bolt support parameters for the roadway surrounding rock.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3