CNN-LSTM Learning Approach-Based Complexity Reduction for High-Efficiency Video Coding Standard

Author:

Bouaafia Soulef1ORCID,Khemiri Randa12ORCID,Maraoui Amna1ORCID,Sayadi Fatma Elzahra13ORCID

Affiliation:

1. Electronics and Microelectronics Laboratory, University of Monastir, Environment Street 5019, Monastir, Tunisia

2. Higher Institute of Computer Science and Multimedia of Gabes, University of Gabes, Gabes, Tunisia

3. National Engineering School of Sousse, University of Sousse, Sousse, Tunisia

Abstract

High-Efficiency Video Coding provides a better compression ratio compared to earlier standard, H.264/Advanced Video Coding. In fact, HEVC saves 50% bit rate compared to H.264/AVC for the same subjective quality. This improvement is notably obtained through the hierarchical quadtree structured Coding Unit. However, the computational complexity significantly increases due to the full search Rate-Distortion Optimization, which allows reaching the optimal Coding Tree Unit partition. Despite the many speedup algorithms developed in the literature, the HEVC encoding complexity still remains a crucial problem in video coding field. Towards this goal, we propose in this paper a deep learning model-based fast mode decision algorithm for HEVC intermode. Firstly, we provide a deep insight overview of the proposed CNN-LSTM, which plays a kernel and pivotal role in this contribution, thus predicting the CU splitting and reducing the HEVC encoding complexity. Secondly, a large training and inference dataset for HEVC intercoding was investigated to train and test the proposed deep framework. Based on this framework, the temporal correlation of the CU partition for each video frame is solved by the LSTM network. Numerical results prove that the proposed CNN-LSTM scheme reduces the encoding complexity by 58.60% with an increase in the BD rate of 1.78% and a decrease in the BD-PSNR of -0.053 dB. Compared to the related works, the proposed scheme has achieved a best compromise between RD performance and complexity reduction, as proven by experimental results.

Publisher

Hindawi Limited

Subject

Computer Science Applications,Software

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3