Quality Enhancement with Frame-wise DLCNN using High Efficiency Video Coding in 5G Networks

Author:

Dommeti Vijaya Saradhi,Dharani M.,Shasidhar K.,Rami Reddy Y Dasaratha,Moorthy T. Venkatakrishna

Abstract

In the present situation, applications related to multimedia are discovered to be comfortable with the use of video. The number of end consumers who use video continues to rise every day. People are presently searching for videos with better quality among the ones that are currently available there. This results in the launch and dissemination of HD (high definition) videos. Ultra high-definition (UHD) videos are becoming more and more popular as a result of this advancement and need. However, as video communication keeps expanding, there is an upsurge in network traffic because of the limited bandwidth, especially among smart cities. Different advancement codecs have been suggested to deal with the data stream to overcome this hazardous circumstance. However, the fact that modern UHD videos have huge amounts of data makes the available codecs even more complicated. UHD videos can be processed with the latest improvement codec, H.265/High-efficiency video coding (HEVC). Nevertheless, it is impacted by increased power consumption and intricate calculations. Limitations in the codec's functionality confine its use to specific applications, preventing its application in wireless, mobile, or portable settings. Hence, this research concentrates on implementing frame-level quality enhancement through a deep learning network known as FQE-Net. The deep learning convolutional neural network (DLCNN) is specifically crafted to manage films with resolutions up to 16K. Its primary objectives include reducing complexity, minimizing artifacts, enhancing the efficiency of the HEVC codec, and compacting energy consumption. To achieve superior efficiency, it is imperative to replace the DWT transforms within the HEVC codec with a DLCNN model. Additionally, incorporating the Content Block Search Algorithm for Motion Estimation and Compensation, alongside filtering techniques like Sample Adaptive Filter and Deblocking Filter, becomes essential. The simulation results showed that the suggested FQE-Net performed better than the conventional techniques.

Publisher

Scalable Computing: Practice and Experience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3