Time Delay Optimization of Compressing Shipborne Vision Sensor Video Based on Deep Learning

Author:

Lu HongruiORCID,Zhang Yingjun,Wang Zhuolin

Abstract

As the technology for offshore wireless transmission and collaborative innovation in unmanned ships continues to mature, research has been gradually carried out in various countries on methods of compressing and transmitting perceptual video while driving ships remotely. High Efficiency Video Coding (H.265/HEVC) has played an extremely important role in the field of Unmanned Aerial Vehicle (UAV) and autopilot, and as one of the most advanced coding schemes, its performance in compressing visual sensor video is excellent. According to the characteristics of shipborne vision sensor video (SVSV), optimizing the coding aspects with high computational complexity is one of the important methods to improve the video compression performance. Therefore, an efficient video coding technique is proposed to improve the efficiency of SVSV compression. In order to optimize the compression performance of SVSV, an intra-frame coding delay optimization algorithm that works in the intra-frame predictive coding (PC) session by predicting the Coding Unit (CU) division structure in advance is proposed in combination with deep learning methods. The experimental results show that the total compression time of the algorithm is reduced by about 45.49% on average compared with the official testbed HM16.17 for efficient video coding, while the Bjøntegaard Delta Bit Rate (BD-BR) increased by an average of 1.92%, and the Peak Signal-to-Noise Ratio (BD-PSNR) decreased by an average of 0.14 dB.

Funder

Liao Ning Revitalization Talents Program

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ship regulatory method for maritime mixed traffic scenarios based on key risk ship identification;Ocean Engineering;2024-04

2. Survey on existing technologies in autopilot systems: current status and future perspectives;2023 7th International Conference on Transportation Information and Safety (ICTIS);2023-08-04

3. Lossless Video Compression Using Reinforcement Learning in UAV Applications;2023 International Conference on Data Science and Network Security (ICDSNS);2023-07-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3