Affiliation:
1. State Key Laboratory of Robotics and System, School of Mechanical Engineering, Harbin Institute of Technology, Harbin 150080, China
Abstract
Compliance has become one prerequisite of robots designed to work in complex operation environment where dynamic and uncertain physical contact or impact takes place frequently and even intentionally. Impedance control is a typical complaint control methodology. Standard impedance control is based on dynamics described by a spring and damper model connected in parallel way, which endues the robot an elastic behavior. In contrast, plastic deformation can be realized by Maxwell model in which spring and damper connect in series. In this study, a novel Cartesian impedance controller is constructed based on the Maxwell model. Implementation in a robot manipulator is executed to validate and analyze the proposed control law. A plastic deformation behavior of the robot manipulator is produced and certain extent compliance is achieved under the unpredictable impact or contact force exerted by human or other environment objects.
Subject
Multidisciplinary,General Computer Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献