Robot compliant catching by Maxwell model based Cartesian admittance control

Author:

Fu Le,Zhao Jie

Abstract

Purpose Admittance control is a typical complaint control methodology. Traditionally, admittance control systems are based on a dynamical relationship described by Voigt model. By contrast, after changing connection of spring and damper, Maxwell model produces different dynamics and has shown better impact absorption performance. This paper aims to design a novel compliant control method based on Maxwell model and implement it in a robot catching scenario. Design/methodology/approach To achieve this goal, this paper proposed a Maxwell model based admittance control scheme. Considering several motion stages involved in one catching attempt, the following approaches are adopted. First, Kalman filter is used to process the position data stream acquired from motion capture system and predict the subsequent object flying trajectory. Then, a linear segments with parabolic blends reaching motion is generated to achieve time-optimal movement under kinematic and joint inherent constraints. After robot reached the desired catching point, the proposed Maxwell model based admittance controller performs such as a cushion to moderate the impact between robot end-effector and flying object. Findings This paper has experimentally demonstrated the feasibility and effectiveness of the proposed method. Compared with typical Voigt model based compliant catching, less object bounding away from end-effector happens and the success rate of catching has been improved. Originality/value The authors proposed a novel Maxwell model based admittance control method and demonstrated its effectiveness in a robot catching scenario. The author’s approach may inspire other related researchers and has great potential of practical usage in a widespread of robot applications.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Control and Systems Engineering

Reference38 articles.

1. Cartesian impedance control of redundant robots: recent results with the dlr-light-weight-arms,2003

2. Kinematically optimal catching a flying ball with a hand-arm-system,2010

3. Catching flying balls and preparing coffee: humanoid rollin’justin performs dynamic and sensitive tasks,2011

4. Fast and ‘soft-arm’ tactics [robot arm design];IEEE Robotics & Automation Magazine,2004

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Real-Time Trajectory Planning and Obstacle Avoidance for Human–Robot Co-Transporting;IEEE Transactions on Automation Science and Engineering;2024

2. Impact-Friendly Object Catching at Non-Zero Velocity Based on Combined Optimization and Learning;2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS);2023-10-01

3. Adaptive Fault-Tolerant Anti-Sway Control of a Nonlinear Tower Crane System;2022 37th Youth Academic Annual Conference of Chinese Association of Automation (YAC);2022-11-19

4. Rangefinder-Based Obstacle Avoidance Algorithm for Human-Robot Co-carrying;Intelligent Robotics and Applications;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3