Stability Mechanism and Repair Method of U-Shaped Steel Reverse Arch Support in Soft Floor Roadway

Author:

Wang Chao12ORCID,Chen Xiaoyi3,Zhang Jiandong3,Wu Yongping24

Affiliation:

1. School of Mining and Coal Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China

2. School of Energy Sources, Xi’an University of Science and Technology, Shaanxi, Xi’an 710054, China

3. Institute of Mining Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China

4. Key Laboratory of Western Mine Exploitation and Hazard Prevention Ministry of Education, Shaanxi, Xi’an 710054, China

Abstract

This paper is aimed at the inverted arch support instability of track roadway with mining level +1100 m in Liuyuanzi Coal Mine. By means of field investigation, theoretical analysis, numerical calculation, and engineering practice, the instability reasons of inverted arch structure are expounded, the mechanical mechanism of instability of inverted arch structure is revealed, and the “sliding-rotating beam” for the instability of inverted arch structure is put forward. Based on Fenner’s formula and mechanics principle, the equilibrium equation of “sliding-rotating beam” is given. The results show the following: Firstly, the insufficient stiffness at the joint of the inverted arch structure and the U-shaped steel support on the floor is the key reason for the floor instability. Secondly, when the action stress of the “sliding-rotating beam” is less than the critical value, three kinds of instability modes of the inverted arch structure may occur, that is, sliding upward, rotating upward, or sliding-rotating upward. Each instability criterion and critical value are also different. Considering the axisymmetric condition, the critical value calculation formula of the three modes can be simplified into one formula. Thirdly, the equivalent friction factor restricts the stability of the “sliding-rotating beam,” and there is a “breaking point.” The relationship between the equivalent friction factor and the action stress of the “sliding-rotating beam” is “class hyperbola.” When the equivalent friction factor is greater than the “breaking point value,” the “sliding-rotating beam” may remain stable. Moreover, with the increase of equivalent friction factor, the action stress required for the stability of the “sliding-rotating beam” is smaller, and it tends to be more stable. The breaking point value of equivalent friction factor is 18.6. Finally, 36U-shaped steel round frame with bolt-mesh-shotcrete-combined support is applied to improve the equivalent friction factor and the foot stiffness of U-shaped support in roadway. After two months of on-site implementation, the floor heave was reduced by 69.1%. In conclusion, the theoretical analysis is correct and the control method is effective.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3