Numerical Studies of Floor Heave Control in Deep Mining Roadways with Soft Rocks by the Rock Bolts Reinforcement Technology

Author:

Sakhno Ivan1ORCID,Sakhno Svitlana1ORCID

Affiliation:

1. Donetsk National Technical University, 29 Sofia Kovalevska Street, Lutsk, Volyn Region 43012, Ukraine

Abstract

The floor heave is one of the key factors that can restrict high-efficiency and safety mining, especially in the deep roadways with soft rock. Considering the influences of rock fracturing over time on rock mass properties, a case study of the floor heave evolution and rock bolts reinforcement technology was performed in this paper. A numerical simulation was used to study the stress-strain state and displacement of surrounding rocks. It was found that significant floor heave caused by nonlinear deformation of laminated immediate floor under an increase in rock fracturing. The post-peak strain regions appear in the bottom corners of the roadway, after which strata in the immediate floor are destroyed one by one. The joint spacing of 0.45 m on the immediate floor is critical. At this step, post-peak strain regions merge in the central part of the roadway floor, which is the cause of uncontrolled floor heave. Rock bolts reinforcement was proposed to control the floor heave. Three floor support schemes with two types of support elements, different bolt orientations, and lengths of reinforcement were studied. The numerical simulation demonstrated that after reinforcement, post-peak plastic strain in the floor strata was reduced effectively. The optimal floor support scheme and depth of reinforcement were determined by the allowable floor heave. Ideally, the floor heaves could be reduced by rock bolts with a steel belt installed according to the support scheme III and reinforcement length of 2.0 m for outer bolts and 3.0 m for central bolts.

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3