Deformation and Failure Characteristics and Control Technology of Roadway Surrounding Rock in Deep Coal Mines

Author:

Chang Jucai1,Li Dong1ORCID,Xie Tengfei1,Shi Wenbao1,He Kai1ORCID

Affiliation:

1. Key Laboratory of Safe and Effective Coal Mining of the Ministry of Education, Anhui University of Science and Technology, Huainan 232001, China

Abstract

With the increase in mining depth, the problem of the floor heave of a roadway is becoming increasingly prominent. Solving this problem for a deep high-stress roadway is the key to ensure safe supply and utilization of coal resources in China. This study investigates the floor heave of a horizontal transportation rock roadway at the depth of 960 m at the Xieyi Mine. A four-way loading simulation test frame similar to the Xieyi Mine was used to reproduce the high-stress environment of a deep roadway by loading different pressures on the roof, floor, and two sides of the roadway. The experimental results show that after the tunnel had been excavated, the surrounding rock failure could be divided into three stages: the initial deformation stage, fissure development stage, and mild deformation stage. The destruction time periods of these stages were 0–0.5 h, 0.5–2 h, and 2–6 h, and the destruction ranges were 0.4 m, 1 m, and 1.5 m, respectively. The amount of roof subsidence, the displacement of the two sides, and the floor heave influence each other, and the range of the bearing ring (5.6 m) of the floor is larger than that of the roof (3.4 m) after the surrounding rock has been damaged. The findings suggest that the floor should be supported first, before the two sides and the roof; then, the support of the key parts (roof and floor corners) should be strengthened. The roof, floor, and two sides are considered for controlling the deformation of the surrounding rock in a coupled trinity support mode. Because of the unfavorable conditions in the area, overexcavation backfill technology was used. The new support was successfully applied during the subsequent construction of the rock tunnel. Based on the long-term monitoring results of the surrounding rock deformation, the floor heave control yielded satisfactory results and maintained the long-term stability of the roadway. Therefore, this study can serve as a reference for preventing floor heave in similar high-stress roadways in the future.

Funder

Natural Science Foundation of Anhui Province

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3