Abstract
Based on plastic limit analysis, the deformation and fracture mechanism of the floor in the large-span chambers of deep mines are discussed and a similarity model test is carried out to verify the reliability of the theoretical analysis. The results show that the local shear failure first appears below the loading area and develops to the middle part of the test model with the increase in load; when the local shear failure develops to form a continuous sliding surface, continuous plastic flow deformation occurs; the distribution of the plastic zone and the deformation mode obtained from the similarity model test are basically consistent with the Hill-like deformation mode derived from plastic limit analysis. A control technology with anti-slide piles is proposed in order to deal with floor heave in large-span chambers on the basis of previous work. An approach for determining the supporting parameters of anti-slide piles is deduced. To deal with the floor heave in the −1100 level gangue winch room of the Huafeng Coal Mine, a comprehensive reinforcement scheme with anti-slide piles composed of discarded rails and anti-floating anchors is introduced for the floor heave control of the chambers. Site monitoring results show that the scheme not only effectively restrains the development of floor heave, but also ensures the long-term stability of the chamber floor.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献