Floor Heave Mechanism and Anti-Slide Piles Control Technology in Deep and Large-Span Chamber

Author:

Shi Jian,Kong Desen

Abstract

Based on plastic limit analysis, the deformation and fracture mechanism of the floor in the large-span chambers of deep mines are discussed and a similarity model test is carried out to verify the reliability of the theoretical analysis. The results show that the local shear failure first appears below the loading area and develops to the middle part of the test model with the increase in load; when the local shear failure develops to form a continuous sliding surface, continuous plastic flow deformation occurs; the distribution of the plastic zone and the deformation mode obtained from the similarity model test are basically consistent with the Hill-like deformation mode derived from plastic limit analysis. A control technology with anti-slide piles is proposed in order to deal with floor heave in large-span chambers on the basis of previous work. An approach for determining the supporting parameters of anti-slide piles is deduced. To deal with the floor heave in the −1100 level gangue winch room of the Huafeng Coal Mine, a comprehensive reinforcement scheme with anti-slide piles composed of discarded rails and anti-floating anchors is introduced for the floor heave control of the chambers. Site monitoring results show that the scheme not only effectively restrains the development of floor heave, but also ensures the long-term stability of the chamber floor.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3