Demadroid: Object Reference Graph-Based Malware Detection in Android

Author:

Wang Huanran1ORCID,He Hui1ORCID,Zhang Weizhe1ORCID

Affiliation:

1. Department of Computer Science and Technology, Harbin Institute of Technology, 92 Xidazhi Street, Harbin, Heilongjiang 150001, China

Abstract

Smartphone usage has been continuously increasing in recent years. In addition, Android devices are widely used in our daily life, becoming the most attractive target for hackers. Therefore, malware analysis of Android platform is in urgent demand. Static analysis and dynamic analysis methods are two classical approaches. However, they also have some drawbacks. Motivated by this, we present Demadroid, a framework to implement the detection of Android malware. We obtain the dynamic information to build Object Reference Graph and propose λ-VF2 algorithm for graph matching. Extensive experiments show that Demadroid can efficiently identify the malicious features of malware. Furthermore, the system can effectively resist obfuscated attacks and the variants of known malware to meet the demand for actual use.

Funder

National Key Research and Development Program of China

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Information Systems

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. VolMemDroid—Investigating android malware insights with volatile memory artifacts;Expert Systems with Applications;2024-11

2. A Systematic Review and Future Perspective of Android Malware Detection Based Machine Learning Techniques;2023 IEEE International Conference on ICT in Business Industry & Government (ICTBIG);2023-12-08

3. Peptide Assemblies for Cancer Therapy;ChemMedChem;2023-07-20

4. KTSDroid: A Framework for Android Malware Categorization Using the Kernel Task Structure;Security and Communication Networks;2023-05-13

5. Adversarial ELF Malware Detection Method Using Model Interpretation;IEEE Transactions on Industrial Informatics;2023-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3