The Evolution of Android Malware and Android Analysis Techniques

Author:

Tam Kimberly1ORCID,Feizollah Ali2,Anuar Nor Badrul2,Salleh Rosli2,Cavallaro Lorenzo3

Affiliation:

1. Information Security Group, Royal Holloway, University of London

2. Department of Computer System and Technology, University of Malaya

3. Information Security Group, Royal Holloway, University of London, Egham Hill, United Kingdom

Abstract

With the integration of mobile devices into daily life, smartphones are privy to increasing amounts of sensitive information. Sophisticated mobile malware, particularly Android malware, acquire or utilize such data without user consent. It is therefore essential to devise effective techniques to analyze and detect these threats. This article presents a comprehensive survey on leading Android malware analysis and detection techniques, and their effectiveness against evolving malware. This article categorizes systems by methodology and date to evaluate progression and weaknesses. This article also discusses evaluations of industry solutions, malware statistics, and malware evasion techniques and concludes by supporting future research paths.

Funder

UK EPSRC

Ministry of Science, Technology and Innovation

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science,Theoretical Computer Science

Cited by 249 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. NativeSummary: Summarizing Native Binary Code for Inter-language Static Analysis of Android Apps;Proceedings of the 33rd ACM SIGSOFT International Symposium on Software Testing and Analysis;2024-09-11

2. Unmasking the Veiled: A Comprehensive Analysis of Android Evasive Malware;Proceedings of the 19th ACM Asia Conference on Computer and Communications Security;2024-07

3. Classification of Android Malware from Binary Code Using Ensemble Method with Recursive Feature Elimination;2024 21st International Joint Conference on Computer Science and Software Engineering (JCSSE);2024-06-19

4. Forensic analysis of hook Android malware;Forensic Science International: Digital Investigation;2024-06

5. Securing Android IoT devices with GuardDroid transparent and lightweight malware detection;Ain Shams Engineering Journal;2024-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3