Line Search-Based Inverse Lithography Technique for Mask Design

Author:

Zhao Xin1,Chu Chris1

Affiliation:

1. Department of Electrical and Computer Engineering, Iowa State University, Ames, IA 50011, USA

Abstract

As feature size is much smaller than the wavelength of illumination source of lithography equipments, resolution enhancement technology (RET) has been increasingly relied upon to minimize image distortions. In advanced process nodes, pixelated mask becomes essential for RET to achieve an acceptable resolution. In this paper, we investigate the problem of pixelated binary mask design in a partially coherent imaging system. Similar to previous approaches, the mask design problem is formulated as a nonlinear program and is solved by gradient-based search. Our contributions are four novel techniques to achieve significantly better image quality. First, to transform the original bound-constrained formulation to an unconstrained optimization problem, we propose a new noncyclic transformation of mask variables to replace the wellknown cyclic one. As our transformation is monotonic, it enables a better control in flipping pixels. Second, based on this new transformation, we propose a highly efficient line search-based heuristic technique to solve the resulting unconstrained optimization. Third, to simplify the optimization, instead of using discretization regularization penalty technique, we directly round the optimized gray mask into binary mask for pattern error evaluation. Forth, we introduce a jump technique in order to jump out of local minimum and continue the search.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Hardware and Architecture

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Efficient ILT via Multi-level Lithography Simulation;2023 60th ACM/IEEE Design Automation Conference (DAC);2023-07-09

2. Deep Learning-Driven Simultaneous Layout Decomposition and Mask Optimization;IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3