Affiliation:
1. Institute of Manufacturing Technology and Graduate Institute of Mechanical and Electrical Engineering, National Taipei University of Technology, Taipei 106, Taiwan
2. Institute of Physics, Academia Sinica, Taipei 115, Taiwan
Abstract
This paper describes a fabrication and characterization of ultraviolet (UV) photodetectors based on Ohmic contacts using Pt electrode onto the epitaxial ZnO (0002) thin film. Plasma enhanced chemical vapor deposition (PECVD) system was employed to deposit ZnO (0002) thin films onto silicon substrates, and radio-frequency (RF) magnetron sputtering was used to deposit Pt top electrode onto the ZnO thin films. The as-deposited Pt/ZnO nanobilayer samples were then annealed at450∘Cin two different ambients (argon and nitrogen) to obtain optimal Ohmic contacts. The crystal structure, surface morphology, optical properties, and wettability of ZnO thin films were analyzed by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), photoluminescence (PL), UV-Vis-NIR spectrophotometer, and contact angle meter, respectively. Moreover, the photoconductivity of the Pt/ZnO nanobilayers was also investigated for UV photodetector application. The above results showed that the optimum ZnO sample was synthesized with gas flow rate ratio of 1 : 3 diethylzinc [DEZn, Zn(C2H5)2] to carbon dioxide (CO2) and then combined with Pt electrode annealed at450∘Cin argon ambient, exhibiting good crystallinity as well as UV photo responsibility.
Subject
General Materials Science,Renewable Energy, Sustainability and the Environment,Atomic and Molecular Physics, and Optics,General Chemistry
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献