Cascaded H-Bridge MLI and Three-Phase Cascaded VSI Topologies for Grid-Connected PV Systems with Distributed MPPT

Author:

Noman Abdullah M.12ORCID,Addoweesh Khaled E.1ORCID,Alabduljabbar Ayman A.3ORCID,Alolah Abdulrahman I.1

Affiliation:

1. King Saud University, Riyadh, Saudi Arabia

2. Taiz University, Taiz, Yemen

3. King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia

Abstract

Cascaded multilevel inverter topologies have received a great deal of attention for grid-connected PV systems. In this paper, three-cascaded multilevel inverter configurations are proposed for grid-connected PV applications. These are the three-phase cascaded H-bridge multilevel inverter topology, three-phase cascaded voltage-source inverter topology using inductors, and three-phase cascaded voltage-source inverter topology using coupled transformers. Distributed maximum power point tracking (MPPT) of PV modules using perturbation and observation algorithm is used for all presented topologies. In all presented configurations, each PV module is connected to one DC-DC isolated Ćuk converter for best MPPT achievement. Simulation is achieved by using the SIMULINK environment. The simulation results show that the three proposed topologies function well in improving the grid’s power quality. The grid currents are kept in phase with the grid voltage to ensure unity power factor, and the THD of the grid currents are within the acceptable range. The proposed topologies are experimentally implemented in the lab, and the switching pulses are generated with the help of the MicroLabBox data acquisition system. Comparing the three topologies according to the number of switches, voltage, and current stresses on switches and THD of the generated voltages and grid currents and according to the efficiency has been achieved in this paper, both experimentally and by simulation. The simulation and experimental results and comparisons are presented to verify the proposed topologies’ effectiveness and reliability.

Funder

King Abdulaziz City for Science and Technology

Publisher

Hindawi Limited

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment,Atomic and Molecular Physics, and Optics,General Chemistry

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3