PV based Systems with Advanced Control Strategies for Load Balancing in Multilevel Inverter

Author:

R VenkedeshORCID,R Anandha Kumar,G Renukadevi

Abstract

In an era driven by sustainable energy solutions, the synergy of photovoltaic (PV) system stands as a beacon of hope for meeting the world's growing energy demands while minimizing environmental impact. This research ventures into the domain of renewable energy integration by seamlessly including a PV system, ingeniously controlled by Chaotic Flower Pollination Optimized Adaptive Neuro Fuzzy Inference System (ANFIS) based MPPT (Maximum Power Point Tracking) controller capable of optimizing the efficiency in the face of ever-changing weather dynamics. The PV system's quest for optimal efficiency receives a substantial boost through the implementation of the High Gain Modified Luo Converter. Designed to achieve an optimal PV output voltage, this converter's prowess finds its true calling in grid applications, where precision and efficiency are paramount. Furthermore, this research extends its purview to incorporate a bidirectional converter linked to an energy storage solution, such as a battery, through a common DC link. The output power is then passed to the Flyback Converter, seamlessly connected to a 31 level Cascaded H Bridge Multi-Level Inverter (31-level CHB MLI) controlled by PI controller. This formidable inverter architecture facilitates the efficient delivery of power to the grid, ensuring a smooth and controlled integration of renewable energy resources. This strategic integration bolsters the system's adaptability, enabling the seamless management of energy flows and grid interactions along with load balancing in MLI. The MATLAB simulation platform is used for confirming the system's overall performance. According to the simulation results, the proposed approach achieves the maximum efficiency with the lowest THD value of 94.5% and 2.5%, respectively.

Publisher

Asian Research Association

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3