Model predictive control for distributed MPPT algorithm of cascaded H-bridge multilevel grid-connected PV inverters

Author:

Pho Bao Binh12,Mai-Van Chung3,Trong Minh Tran1,Vu Phuong1

Affiliation:

1. Hanoi University of Science and Technology , School of Electrical and Electronic Engineering , Hanoi , Vietnam

2. Hanoi University of Civil Engineering , Hanoi , Vietnam

3. Hung Vuong University , Phu Tho , Vietnam

Abstract

Abstract This paper concentrates on an algorithm with model predictive control for current and distributed MPPT for cascaded H-bridge multilevel photovoltaic (PV) inverter applications. In conventional method, in each sampling period, a discrete-time model is employed to predict the current future values for all vectors of voltage. The voltage vector will be approved if it minimizes the cost function. Because multilevel inverter has so many available voltage vectors, there is a large quantity of calculations, hence it makes difficult in implementing the normal control method. A varied control strategy that extensively decreases the calculations volume and eliminating common-mode voltage is proposed. To raise the PV modules performance and enlarge the systems power, a distributed maximum power point tracking (MPPT) control scheme for each phase of multilevel inverter is offered, that allows its DC-link voltage to be regulated separately. The recommended approach is double-checked by using a model simulated in MATLAB-Simulink software.

Publisher

Walter de Gruyter GmbH

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Grid-Connected PV System's Voltage Stabilisation Using Model Predictive Control Based MPPT During Abrupt Changes in Irradiance;2024 IEEE 18th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG);2024-06-24

2. Adaptive sliding mode control based on fuzzy logic for hybrid smart microgrid energy management system;Australian Journal of Electrical and Electronics Engineering;2023-08-21

3. Harmonic reduction of grid-connected multilevel inverters using modulation of variable frequency carriers;Journal of Electrical Engineering;2023-08-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3