GIS-Based Landslide Susceptibility Mapping Using Information, Frequency Ratio, and Artificial Neural Network Methods in Qinghai Province, Northwestern China

Author:

Li Bin123ORCID,Wang Nianqin1,Chen Jing4ORCID

Affiliation:

1. College of Geology and Environment, Xi’an University of Science and Technology, Xi’an, Shaanxi 810000, China

2. The Third Non-ferrous Geological Exploration Institute of Qinghai Province, Xining, Qinghai 810000, China

3. Key Laboratory of Geological Processes and Mineral Resources, Northern Qinghai-Tibet Plateau, Xining, Qinghai 810000, China

4. Qinghai Normal University, Xining, Qinghai 810000, China

Abstract

Landslides are one of the nature hazards causing a lot of casualties and property losses in the world. Over the last decades, many researchers have made contributions in landslide susceptibility maps using qualitative and quantitative methods. Parameters of DEM, geology, etc. are selected to analyze the mechanism of landslides. The quality of data is essential in the landslide studies, and more credible results can be obtained if the data is adequate and accurate from the wide range of parameters. The aim of this study is to evaluate the landslide susceptibility of Huangyuan County of Qinghai. Through field investigations, 100 landslide disaster locations in the study area were selected, and 11 influencing factors including elevation, slope, aspect, plane curvature, profile curvature, road distance, river distance, fault distance, stratum rock property, vegetation coverage index, and terrain humidity index were selected as the influencing factors of landslide disaster based on GIS. In this paper, the information method (IM) model, frequency ratio (FR) model, and artificial neural network (ANN) model are used to evaluate the susceptibility of geological hazards, and the receiver operating characteristic (ROC) curve of disaster points at different levels is used to test the evaluation accuracy of three models. The results show that factors that have great influence on landslides are associated with witness, and the terrain humidity index has the highest weight in the occurrences of landslide. The values of AUC indicate that the ANN model is the best evaluation model suitable for the study area and can be extremely useful for landslide hazard mitigation strategies. Based on the calculation of ANN model, three valley areas are determined with high landslide susceptibility, and necessary reinforcement measures should be taken.

Funder

QingHai Department of Science and Technology

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3