Earthquake Risk Assessment in Seismically Active Areas of Qinghai Province Based on Geographic Big Data

Author:

Zhang Zhouping1,Kang Junmei1ORCID,Wang Jun1,Fang Dengmao1,Liu Yang1

Affiliation:

1. Xi’an Institute of Surveying and Mapping, Xi’an 710054, China

Abstract

Earthquakes can cause serious damage to buildings, roads and other infrastructure. The large amount of dust and particulate matter generated when these structures collapse and are damaged can quickly enter the air, leading to a decline in air quality. At the same time, earthquakes may cause secondary disasters such as fires and landslides, which will also produce large amounts of soot and particulate matter, which will have a negative impact on air quality. Therefore, earthquake disaster risk assessment studies are carried out to identify potentially hazardous areas and facilities in advance in order to reduce the air pollution problems that may be caused by earthquakes. Existing research on earthquake disaster risk assessment mainly evaluates earthquake risk from the perspective of geology or seismology, but there are few studies based on multidisciplinary assessment that integrates geology, seismology, engineering and social sciences into socioeconomic factors. To this end, based on remote sensing and GIS technology, this paper takes Qinghai Province, a seismically active area, as the research area, and integrates land use data, natural environment data, social environment data and seismic parameter zoning data to construct a comprehensive assessment model for earthquake disaster vulnerability and risk. The results showed that there were 5 very high-risk areas, 7 high-risk areas, 10 medium-risk areas, 11 low-risk areas and 12 very low-risk areas in Qinghai Province. The high-risk areas are mainly distributed in the central and western parts of Qinghai Province, where the earthquake breeding environment is sufficient, the scale of active faults is huge and the adaptability of the carrier is low. The results of an earthquake disaster risk assessment can provide a reference for the government to formulate environmental protection policies. According to the assessment results, the government can formulate targeted measures to strengthen air pollution control and improve air quality.

Funder

Study on progressive damage mechanism and dynamic stability of multi-slip landslides in reservoir environment

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3