Adaptive Cultural Algorithm-Based Cuckoo Search for Time-Dependent Vehicle Routing Problem with Stochastic Customers Using Adaptive Fractional Kalman Speed Prediction

Author:

Xue H.1234ORCID

Affiliation:

1. School of Navigation, Jimei University, Xiamen, China

2. National and Local Joint Engineering Research Center of Ship Aided Navigation Technology, Jimei University, Xiamen, China

3. Fujian Shipping Research Institute, Jimei University, Xiamen, China

4. Xiamen Southeast International Shipping Research Center, Jimei University, Xiamen, China

Abstract

For the Time-Dependent Vehicle Routing Problem with Stochastic Customers (TDVRPSC), an adaptive Cultural Algorithm-Based Cuckoo Search (CACS) has been proposed in this paper. The convergence of the new algorithm is proved. An adaptive fractional Kalman filter (AFKF) for traffic speed prediction is proposed. An adaptive mechanism for choosing the covariance of state noise is designed. Its mathematical process is proved. Several benchmark instances with different scales are tested, and new solutions are discovered, which are better than the published solutions. The effects of the parameters on the convergence and the results are studied. According to cargo weight of customers to be delivered, the customers can be divided into large, small, and retail customers. The algorithm is tested with fixed demand probability and also different customer types with stochastic demand. The traffic speeds in different business districts in Xiamen at different times are predicted by AFKF. The results show that AFKF has smaller prediction error and better prediction accuracy than fractional Kalman filter and Kalman filter. The effect of different fractional orders on prediction error is compared. The performance of the new algorithm is compared with that of the cultural algorithm and the Cuckoo Search. The result shows that the new algorithm can efficiently and effectively solve DTVRPSC and improve the accuracy of vehicle routing planning of time-varying actual urban traffic road.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3